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We have used a Bayesian neural network to distinguish between drugs and nondrugs. For
this purpose, the CMC acts as a surrogate for drug-like molecules while the ACD is a surrogate
for nondrug-like molecules. This task is performed by using two different set of 1D and 2D
parameters. The 1D parameters contain information about the entire molecule like the
molecular weight and the the 2D parameters contain information about specific functional
groups within the molecule. Our best results predict correctly on over 90% of the compounds
in the CMC while classifying about 10% of the molecules in the ACD as drug-like. Excellent
generalization ability is shown by the models in that roughly 80% of the molecules in the MDDR
are classified as drug-like. We propose to use the models to design combinatorial libraries. In
a computer experiment on generating a drug-like library of size 100 from a set of 10 000
molecules we obtain at least a 3 or 4 order of magnitude improvement over random methods.
The neighborhoods defined by our models are not similar to the ones generated by standard
Tanimoto similarity calculations. Therefore, new and different information is being generated
by our models, and so it can supplement standard diversity approaches to library design.

1. Introduction
Recent developments in combinatorial organic syn-

thesis and high throughput screening methods have
enormously increased the possibility of finding novel
lead compounds.1-3 The rate of discovery of novel leads
depends, in part, on the diversity of the assayed
compounds. To this end there have been many attempts
to define and construct diverse sets of compounds so that
screening can be made more effective than random
search.4-7 Many reasonable arguments have been made
to show that a designed library is preferable to a random
one. However, this is still an act of faith. The primary
reason is that it is not obvious that diversity is inde-
pendent of the system being assayed, that is, a diverse
database for one biological target may not be equally
diverse for another. In addition, when measuring
diversity it is not obvious how to weight the descriptors
that describe a molecule. The major hurdle currently
faced by researchers is the lack of sufficient experimen-
tal results to evaluate different questions on diversity.

Combinatorial libraries can be truly enormous. Even
virtual libraries created on a computer have to be
truncated in order to evaluate their characteristics. A
simple and useful example is to limit the analysis to
synthetically accessible molecules. We propose the
notion of “drug-likeness” as another useful way to select
molecules for screening. We contend that there is value
in designing a library (either diverse or focused) which
contains a set of “drug-like” compounds. The ability to
distinguish drug-like molecules will also be useful for
other computational chemistry endeavors like de novo
design.8 Therefore, it is important to understand and
evaluate the concept of drug-likeness of a molecule. In
this paper we describe a first attempt at the task of

predicting drug-likeness. We perform this task by using
a set of 2D/1D descriptors to train a learning system.

What makes a molecule a drug? The answer depends
on a complicated interrelationship between toxicity,
synthetic accessibility, chemical and metabolic stability,
cost, marketability, and so on. There have been previ-
ous attempts at predicting toxicity,9,10 synthetic acces-
sibility, and metabolic stability. These ventures have
seen limited success. The prediction of what constitutes
a drug should be proportionately more difficult. What
provides us hope is the availability of large databases
of drug or drug-like molecules, e.g., CMC (Comprehen-
sive Medicinal Chemistry),11 and MDDR (MACCS-II
Drug Data Report).12 Large datasets are not readily
accessible in other, more specialized, areas like toxicity
or metabolism. In addition we also have much larger
databases of compounds represented by the ACD (Avail-
able Chemicals Directory).13 We view the molecules in
the ACD as falling into two categories. They are either
(1) “close-to-drugs” or (2) “far-from-drugs”. So if we
would like to build a small library from the ACD we
would be well-advised to pick up a set of diverse
compounds that are close-to-drugs.

There are over 80 000 compounds in the CMC and
MDDR databases together, with over 5000 compounds
in the CMC after we have eliminated compounds like
spermicides, aerosol propellants, etc.14 We need to
develop methods that will extract useful information
from such large databases. These methods for data
mining will either enumerate patterns from or fit
models to data. There are many statistical problems
with blind data mining that we need to be careful about.
For example, large databases can be a blessing against
overfitting. On the other hand, we have to guard
against chance fits especially in systems that search
through large model spaces (large number of descrip-
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tors). High dimensionality of the model space (i.e.,
many descriptors and functional forms) also causes
problems as our understanding of estimation in high
dimensions is fairly primitive. Another major problem
with large databases is that they grow over time and
not always as if sampled from a static probability
distribution, i.e., the probability distribution can alter
drastically. For example, Lipinski15 has shown that
there has been a shift to higher molecular weights for
the compounds in clinical trials over the past few years.
That is, the characteristics of drug molecules today may
change in the future. The simplest solution to this
problem is retraining as new data arrive.

2. Methods

In this section we provide an overview of the learning
systems used to analyze the CMC and ACD databases.
Additional details can be found in the Supporting Information.

2.1. The Learning Systems. As mentioned in the Intro-
duction, data mining can be fraught with chance fits. To guard
against this, we have used two completely different procedures
to build the models, one based on neural networks16 and the
second on a machine learning algorithm (c4.5)17 which is a
decision tree learning system. A neural network stores its
information in a distributed fashion and small changes in
parameters and input values does not affect its performance.
On the other hand, c4.5 is rather more sensitive to the
magnitude of input values. Therefore, the learning charac-
teristics of these algorithms are entirely different, providing
a buffer against chance fits. Both the methods require some
training data from which learning takes place. As the size of
the ACD and CMC are large, we have chosen to work with
smaller subsets (this is computationally required for both the
neural networks and part of the c4.5 suite of programs). The
training set is formed by a random partition of about 3500
compounds each from the CMC and the ACD (this leaves about
2000 compounds for testing from the CMC, a sufficiently large
number to gauge predictive performance.). Ten different
training/test set realizations were constructed and studied to
minimize the possibility of chance fits. In addition we have
conducted experiments with random data to test the efficiency
and usefulness of the models constructed.

We note an important distinction between the standard way
learning systems are used and their use here. The learning
system is usually asked to pick a model based on the descrip-
tors that best distinguish between two (in our case) classes of
compounds, drugs and nondrugs. The model generated is then
used for gaining insight or for prediction. During training and
testing the classes assigned to the compounds are always
correctsthere is no ambiguity in this assignment. In our case,
however, the learning system will be trained based on the
assumption that the vast majority of compounds in the ACD
are nondrugs. After training, we hope to then evaluate
compounds in the ACD as drug-like or nondrug-like based on
the prediction by the model and its level of certainty about
the prediction. That is, we are interested in teasing out drug-
like compounds from the set that were initially classified as
nondrugs. We will therefore be relying solely on the system’s
assessment of its correctness for predictive purposes.

The basic intuition behind this paper is described in Figure
1. It shows the distribution of objects belonging to two classes
(circles and squares) in a two-dimensional space. It also shows
two decision boundaries (curved lines) generated by two
hypothetical learning algorithms. A good learning algorithm
will choose to generate a decision boundary that separates the
two classes as much as possible. Note that the squares found
in regions of space predominantly occupied by circles are more
“circle-like” than other squares. Squares near the boundaries
separating the classes are intermediate in nature. If we
assume that the circles represent compounds from the CMC
and the squares compounds from the ACD, we would like a
set of descriptors (and appropriate learning methods) that

would put most of the circles on one side of the decision
boundary and as many squares as possible on the other side.
Once such a decision boundary is generated we can pick the
squares which were misclassified with low probability (i.e.,
squares found in regions of descriptor space dominated by
circles) and call them more drug-like than others. In general,
the distribution of the points in space will depend on the
descriptors used and so will our ability to draw decision
boundaries. Also, the filled circles and squares represent
objects that are misclassified with low probability (low confi-
dence) and the shaded ones are misclassified with high
probability (high confidence).

In the rest of the section we will describe our choice of
descriptors for the molecules and provide a rough outline of
Bayesian neural networks (BNN). Details regarding the both
c4.5 and BNN algorithms can be found in the Supporting
Information.

2.1.1. Descriptors. The choice of descriptors is difficult a
priori. We cannot hope to use thousands of descriptors in a
learning system. We also want to limit the computational
resources used in building descriptors. These issues have led
us to the choice of 2D and 1D descriptors. The 1D (“one-
dimensional”) descriptors contain information about the entire
molecule. As a first test, we started with a set of seven
descriptors,18 namely log P, molecular weight (MW), number
of hydrogen bond donors (ND), number of hydrogen bond
acceptors (NA), number of rotatable bonds (NR), aromatic
density (AR), and the kappa index (2κR, specifying the degree
of branching of the bonding pattern;19 in general this will be
highly correlated with NR). Intuitively, these seem a reason-
able first choice. The 2D (“two-dimensional”) parameters
contain information about the presence or absence of specific
functional groups within a molecule. Our choice for this set
is based on the ISIS fingerprint20 for each compound. This is
a bit string (a string of 0’s and 1’s) of length 166 with a 1/0
indicating the presence/absence of some moiety or “key”. There
are 166 such keys for each compound (Table 1 lists some of
these). This choice of descriptors is reasonably common in the
diversity literature.21 In fact, Brown and Martin21 have
recently shown that the 166 ISIS keys perform remarkably
well for clustering and diversity analysis.

Building reliable models with the ISIS fingerprints is much
harder than with the seven descriptors because of the high
dimensionality. Prediction accuracy, however, should improve
with the ISIS fingerprints as it is capable of representing
molecules in greater detail.

It is possible to graphically explore the distribution of the
seven descriptor set. This would allow us to look for outliers

Figure 1. Basic intuition. The curved lines shows two possible
decision boundaries. The filled squares or circles are misclas-
sified with low probability while the shaded ones are misclas-
sified with high probability. See text for interpretation.
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and perhaps eliminate them from consideration. The reason
for removing compounds with very large or very small values
(outliers) is not because we deem them unimportant. Rather,
outlying values may inhibit the model construction process.
In addition we are interested in constructing general purpose
databases, and we would like to eliminate compounds with
peculiar properties. No such graphical analysis, however, is
possible for the ISIS fingerprints.

With the ISIS fingerprint data it is possible to have a fair
number of unimportant descriptors. This can also cause
problems with any learning method. We have conducted
limited investigations on retraining after removing the unim-
portant descriptors within the Bayesian neural network
framework. The major advantage of such pruning in descrip-
tor space accrues from the fact that a more compact decision
space usually leads to more robust classifiers. Robust classi-
fiers are in general more reliable for predictions.

2.1.2. Bayesian Neural Network. Neural networks can
be viewed as a flexible regression (classification) technique.
Because of the inherent nonlinearity of neural networks they
are able to model regularities in data much more effectively
than linear models. The almost unlimited “extra flexibility”
provided by a neural network often causes modeling of not just
the regularities but stray correlations in the data. There are
many ad hoc procedures that attempt to prevent learning of
these chance correlations. The most important of these is the
use of weight decay and early stopping procedures based on

monitoring the performance on an independent validation
set.16 Sometimes, cross-validation is also used to monitor and
evaluate performance. However, cross-validation estimates
can often be quite noisy leading to difficulties in parameter
optimization. A Bayesian approach to neural network model-
ing22,23 allows for simultaneous and reliable optimization of a
large number of control parameters. It allows us to sample
the weight space more thoroughly than standard methods,
thus avoiding local minima pitfalls.

In standard neural network training we are interested in
obtaining a single set of weights that fit the training data, i.e.,
minimize an error criterion. In contrast within a Bayesian
procedure we obtain a large number of weights and associated
with each set is a probability weighting factor that is high if
the resulting error is low and vice versa.

It is intuitively clear that most choices of weights will lead
to low probability weightings. It is therefore imperative that
a reliable and robust method be found for sampling in weight
space. This is done in analogy with accepted procedures in
molecular dynamics and Monte Carlo methods used in protein
simulations. Technically these methods are called Markov
Chain Monte Carlo (MCMC) methods.24 In this paper we have
used the hybrid MCMC procedure advocated by Neal.22 More
details of the algorithm are described in the appendix.

Since this is a binary classification problem we use a
network with 1 output unit. The standard Gaussian data
model for linear regression would be inappropriate and so is

Table 1. Description of Each of the ISIS Keysa

1*,†,# isotope 86*,†,# CH2QCH2
2*,†,# 103 < at.no < 256 88*,# S
3*,†,# group IVA,VA,VIA etc. 89*,†,# OAAAO
8*,†,# QAAA@1 93† QCH3
9*,†,# group VIII; metals 96*,# five-membered ring
12* group IB, and IIB element 99*,† CdC
13*,†,# ON(C)C 100*,# ACH2N
15* OC(O)O 101† eight-membered or larger ring
17*,† C#C 103# Cl
18# group IIIA element 105*,†,# A$A($A)$ A
19*,†,# seven-membered ring 106*,# QA(Q)Q
20*,# Si 112*,# AA(A)(A)A
22*,† three-membered ring 116* CH3AACH2A
23# NC(O)O 121*,† heterocycle with N
25†,# N-O 125*,# more than one aromatic ring
26*,# C$dC($A)$A (all bonds ring bonds) 129*,† ACH2AACH2A
30*,# fragment CQ(C)(C)A 131†,# more than one QH group
31†,# QX 135*,† Nnot%A%A
35*,# group IA element 137†,# heterocycle
36# sulfur-containing heterocycle 138*,†,# OH
38*,# NC(C)N 143* A$A!O
39† OS(O)N 144† Anot%A%Anot%A
42†,# F 145*,# more than one six-membered ring
44*,†,# other (?) 147*,† ACH2CH2A
47*,†,# SAN 148*,# AQ(A)A
52*,†,# NN 151† NH
54* QHAAQH 152* OC(C)C
55*,† OSO 158*,†,# C-N
56*,†,# ON(O)C 162# aromatic
60*,† SdO 163*,# six-membered ring
62*,†,# A$A!A$A 166*,# more than one fragment; structure
64*,# A$-A!S cannot be drawn in one connected set
65*,†,# C%N; aromatic bond 167*,†,# MW
66* CC(C)(C)A 168*,†,# donor
68*,†,# QHQH 169*,# acceptors
72*,† OAAO 170*,# rotors
77*,# NAN 171*,†,# aromatic density
80*,† NAAAN 172*,# 2κR
82* ACH2QH 173*,†,# log P
84*,†,# NH2

a “)” is a double bond, “#” is a triple bond, “Q” is any heteroatom, “A” is any heavy atom, “X” is a halogen, “%” is for ring bond, “not%”
for not ring bond, “$” is an aromatic bond, “not$” is not an aromatic bond, “!” means the bond must be part of a chain. “Hn” means at least
n hydrogens must be present. The “@n” indicates that atom number n is attached here. Parentheses indicate branching (connected to the
left atom, but not the right). If the bond is omitted, then it means any type of bond. The “+ rare” represents the presence of some other
rare features in the molecule. The “starred” keys are important for the linear models (BNN0). The keys with a “†” are important in
providing nonlinear contributions in the networks with five hidden units (BNN5). Finally the ones with important linear contributions
in BNN5 are designated with a pound (#) sign. There is a significant overlap between the BNN0 keys and the linear contributors from
BNN5, though there are some differences.
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replaced by a logistic regression model.16 We have built
networks with no hidden units (BNN0; this is analogous to
linear discriminant analysis), a network with five hidden units
(BNN5), and one with ten hidden units (BNN10).

2.1.3. Testing Protocols. It is nontrivial to construct fool-
proof criteria to assess the success of the learning system on
our problem. The reasons for this include the large dimen-
sionality of the problem and relative size of the ACD database
compared to the CMC.

We use five criteria to assess reliability: (1) the accuracy
and confidence in prediction of compounds; (2) consistency or
otherwise of predictions by the different methods; (3) an
examination of the change in predictions when small changes
are made to the compounds; (4) a visual examination of drug
molecules that are incorrectly predicted; and (5) behavior of
predictions upon randomization of both descriptors and classes.

We also report on the classification accuracy on two different
databases: (1) MDDR, (2) a small set of 30 compounds built
from scaffolds14 and side chains28 generally found in known
drugs from the CMC database. This explores predictive
behavior on small changes to a molecule. These results should
provide a good assessment of the practical usefulness of our
procedure. Exploring the performance on the MDDR database
provides an opportunity to assess extrapolations. One way to
assess the usefulness of the method is by looking at the
number of compounds in the MDDR that are classified as drug-
like. One would expect, a priori, that this number should be
large, since the MDDR contains molecules believed to be
biologically active.

3. Results

We begin with a discussion of the differences between
the ACD and the CMC based on the seven-descriptor
set. This is followed by detailed results based on the
Bayesian neural network (BNN) method. The c4.5
results are somewhat worse (in all cases) than the BNN
ones. They are more prone to local minima problems.
Further details regarding the performance of the c4.5
algorithm can be found in the Supporting Information.

3.1. Differences in the Distribution of the Seven-
Descriptor Set. Histogram plots of the seven-descrip-
tor dataset do not reveal any differences between
compounds in the CMC and ACD. A similar analysis
looking at quantiles and QQ plots25 does not reveal any
differences either. The QQ plots, however, show that
there are some outliers in the databases. We have
therefore elected to prune the CMC and ACD to get rid
of compounds with molecular weights greater than 600,
with log P values beyond 11.0 and -4.0, and with 2κR
values larger than 30.26 This was done so as to keep
the models generated from becoming too biased.

The correlation matrix and principal component
analysis (PCA) for the CMC and ACD databases are
shown in Tables 2 and 3, respectively. Notice that even
though the pattern of the correlations are similar there
are significant differences in values. For the CMC, MW
is correlated with (NA, NR, 2κR) (coefficient > 0.5) while
for the ACD, MW is correlated with (NR, 2κR, AR, log
P). A principal component analysis (on correlations, i.e.,
standardized data) shows that the first three compo-
nents explain roughly 84% of the data in both CMC and
ACD. A factor analysis27 (with three components) using
the varimax method shows some differences between
the CMC and the ACD. For the ACD, the first factor
has large loadings on NR and 2κR and intermediate
loadings on MW and log P, the second factor has large
loadings on ND, NA, and log P, the third factor has large
loadings on AR, MW, and log P. For the CMC, the first

factor has large loadings on NR, 2κR, and MW, the
second on ND, NA, and log P, the third on AR with
intermediate ones on MW and log P. It appears,
therefore, that there is some difference between the two
datasets at least with the seven-descriptor set.

A similar analysis was performed in order to look for
biases introduced when considering only about 2% of
the data from the ACD for training. Table 4 shows the
correlation matrix and principal component analysis for
the ACD compounds in one training set. In this case
the numerical values for the correlation matrix, PCA,
and factor loadings are very close to the complete ACD,
indicating that the diversity of the ACD is captured to
a significant degree by a dataset of roughly 4000
compounds. A similar statement can be made for all
the 10 training sets. The same 10 train/test set pairs
were used for all the results in this paper. We caution,
however, that a reasonable coverage based on the seven-
descriptor set does not necessarily imply a similar
conclusion when using the ISIS fingerprints.

Table 2. Basic Statistics on the Compounds from the Pruned
CMC Database

Correlation

MW ND NA NR 2κR AR log P

MW 1.0 0.13 0.58 0.55 0.73 0.31 0.36
ND 1.00 0.38 0.16 0.13 -0.16 -0.49
NA 1.00 0.35 0.38 -0.05 -0.37
NR 1.00 0.89 0.12 0.23
2κR 1.00 0.22 0.39
AR 1.00 0.48
log P 1.00

Principal Components
Eigenvalue 2.97 2.01 0.81 0.63 0.39 0.10 0.06
Percent 42.51 28.78 11.68 9.08 5.57 1.44 0.90
CumPercent 42.51 71.29 82.98 92.07 97.64 99.09 100.00

Rotated Factor Patterns Assuming Three Factors Are Important

MW 0.73 -0.24 0.46
ND 0.08 -0.78 -0.11
NA 0.39 -0.78 0.13
NR 0.93 -0.05 -0.05
2κR 0.96 -0.03 0.13
AR 0.07 0.15 0.92
log P 0.38 0.73 0.43

Table 3. Basic Statistics on the Compounds from the Pruned
ACD Database

Correlation

MW ND NA NR 2κR AR log P

MW 1.00 0.13 0.48 0.56 0.68 0.57 0.55
ND 1.00 0.37 0.23 0.23 -0.05 -0.40
NA 1.00 0.35 0.38 0.13 -0.22
NR 1.00 0.86 0.14 0.29
2κR 1.00 0.27 0.43
AR 1.00 0.54
log P 1.00

Principal Components
Eigenvalue 3.18 1.81 0.91 0.59 0.27 0.12 0.10
Percent 45.49 25.83 12.99 8.44 3.96 1.82 1.44
CumPercent 45.49 71.32 84.32 92.76 96.73 98.55 100.00

Rotated Factor Patterns Assuming Three Factors Are Important

MW 0.56 -0.20 0.71
ND 0.16 -0.79 -0.13
NA 0.23 -0.79 0.26
NR 0.94 -0.15 0.05
2κR 0.92 -0.15 0.23
AR 0.03 0.02 0.93
log P 0.42 0.60 0.60
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3.2. Prediction Performance. Table 5 shows the
result when using a neural network with five hidden
units trained using the Bayesian method. For the CMC
and ACD databases the table reports the percent error
made in classification; for the MDDR it reports the
percentage of compounds that were classified as drug-
like. The range of values shown in the table correspond
to all the 10 networks.

The performance using just the seven-descriptor set
is quite impressive. It predicts over 80% of the CMC
compounds correctly. However, about 30% of the ACD
is classified as drug-like, which appears to be high. A
respectable number of compounds in the MDDR are
classified as drug-like. This conforms with our expecta-
tion that any method that distinguished drug-like
molecules from nondrug-like molecules should classify
a majority of the MDDR compounds as drug-like.

Using 166 binary descriptors instead of the seven 1D
descriptors results in a somewhat improved perfor-
mance, overall. The error in the CMC test compounds
is larger by about 5%, while number of compounds
classified as drug-like in the ACD falls sharply by 10%
and rises sharply by about 17% for the MDDR.

As expected, the performance of the networks that
combine the ISIS keys and the seven-descriptor set is
the best. It covers about 90% of the CMC space while
only classifying about 10% of the ACD as drug-like and
classifying around 80% of the compounds in MDDR as
drug-like. The improvement in the predictive perfor-
mance over the seven-descriptor set, especially the

reduction in the number of compounds in the ACD that
are classified as drug-like, implies that we need to use
the additional complication introduced by the ISIS keys.

Table 6 gives the predictive performance obtained by
using a linear classifier (BNN0) and a network with 10
hidden units (BNN10). There are no differences in
predictive performance between BNN5 and BNN10 to
within the level of accuracy shown in the table. The
performance of BNN0 is not as good as BNN5. The
improvement in performance of BNN5 is significant
enough to use BNN5 models for any future predictions.

The Bayesian learning procedure allows us to assign
an “importance level” to each descriptor for generating
a model. An analysis of the values of the hyperparam-
eters associated with the input-hidden and input-output
weights can tell us the importance of each descriptor to
the model (see Supporting Information for details). We
base the importance level of a descriptor on the median
value of the hyperparameter associated with the input-
output or input-hidden weights for the descriptor. The
hyperparameter values are positive numbers, and in our
case the maximum is usually below 20. All descriptors
with median hyperparameter value less than or equal
to 0.1 are deemed irrelevant. Next, all those descriptors
that are considered to be important in at least 6 out of
the 10 trained networks are reported in Table 1 (a total
of 78 descriptors). The “starred” keys are important for
the linear models (BNN0). Notice that all seven 1D
descriptors are important. The keys with a “†” are
important in providing nonlinear contributions in the
networks with five hidden units (BNN5). Finally the
ones with important linear contributions in BNN5 are
designated with a pound (#) sign. There is a significant
overlap between the BNN0 keys and the linear con-
tributors from BNN5, though there are some differ-
ences. These differences arise due to the fact that
BNN5 also has nonlinear contributions.

As a final check, Table 7 shows the results of training
10 networks (on the same training sets) using the
reduced set of 78 descriptors. As expected, these results
are close to the ones obtained using the original data.
These results are a little worse than the complete set
of 173 keys; this is expected as the hyperparameters
removed from consideration were not completely ir-
relevantstheir significance level was low compared to
the other descriptors.

Table 4. Basic Statistics on the Compounds from the ACD in
One of the Training Sets

Correlation

MW ND NA NR 2κR AR log P

MW 1.00 0.14 0.47 0.55 0.68 0.57 0.55
ND 1.00 0.38 0.25 0.27 -0.05 -0.40
NA 1.00 0.36 0.39 0.13 -0.23
NR 1.00 0.87 0.13 0.28
2κR 1.00 0.26 0.39
AR 1.00 0.54
log P 1.00

Principal Components
Eigenvalue 3.16 1.83 0.91 0.59 0.28 0.12 0.10
Percent 45.17 26.10 12.95 8.45 4.02 1.79 1.50
CumPercent 45.17 71.27 84.22 92.67 96.70 98.49 100.0

Rotated Factor Patterns Assuming Three Factors Are Important

MW 0.55 -0.19 0.72
ND 0.18 -0.78 -0.13
NA 0.23 -0.79 0.26
NR 0.94 -0.15 0.06
2κR 0.92 -0.17 0.24
AR 0.02 0.01 0.93
log P 0.40 0.61 0.61

Table 5. Prediction Performance on 10 Independent
Realizations of the Test Set Based on a Bayesian Neural
Network with One Hidden Layer Containing Five Units
(BNN5)a

method CMC error ACD error MDDR “drug-like”

BNN5; 7des 16-19 25-29 61-68
BNN5; ISIS 21-23 17-19 83-84
BNN5; ISIS+7des 9-11 11-12 77-79

a The CMC database lists the percent misclassifications. The
ACD also lists the percent misclassifications, in other words it
gives the percent of drug-like compounds in the ACD. For the
MDDR we list the percent of drug-like molecules. See the text for
a discussion.

Table 6. Prediction Errors on 10 Independent Realizations of
the Test Set Using the 173 Descriptor Dataset for a Linear
Discriminant Network (Using Bayesian Methods) and Network
with 10 Hidden Unitsa

method CMC error ACD error MDDR “drug-like”

BNN0; ISIS+7des 14-17 16-17 76-77
BNN10; ISIS+7des 9-11 11-12 77-79

a The results are shown in the same format as in Table 5.

Table 7. Performance Using the Reduced Set of 78
Descriptors on the CMC, ACD, and MDDR Databasesa

method
CMC
error

ACD
error

MDDR
“drug-like”

BNN5; ISIS+7des
(71 ISIS + 7des)

10-12 12-13 77-80

a Notice that the performance falls negligibly from the networks
using 173 descriptors. This shows the advantages of the Bayesian
procedure.
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3.3. Randomization Tests. One of the final tests
we performed was a data randomization test. The
descriptors in the training and test sets were randomly
permuted. Upon training, no learning took placesall
the weight vectors were close to zero, implying a
classification of “nondrug” for all compounds. This
suggests that the learning methods are picking up some
real information from the original unrandomized data.

Two additional, more stringent tests were performed
in order to determine that there are real differences
between drug-like and nondrug-like molecules and that
some of this is captured by the CMC and ACD databases
and the representation we have adopted. We con-
structed random training sets out of the ACD with half
of the data labeled as “drugs” and other half as “acd”.
The same experiment was conducted with the CMC
database. We report on the results of training a Bayes-
ian neural net on these two datasets. At this point it is
important to recall that ISIS fingerprints are designed
so that a very large percentage of compounds in the
datasets (CMC, ACD, and others) are distinguishable.
This implies that, in principle and unlike the descriptor
randomization results, one would expect that a reason-
able separation of any two random datasets is possible.

On the dataset that splits the ACD database into two
sets, one called “drugs” and the other “acd”, we obtained
the following results using BNN5.

1. The training set has ∼35% error in the “acd” group
and ∼30% error in the “drug” group. This is very
different from the ∼15% and ∼9% error rates in the real
dataset.

2. CMC classification error is ∼62%, versus 9% on
the real data.

3. Approximately 80% of the molecules in the MDDR
database were classified as nondrugs, versus 20% for
the real data.

On the dataset that splits the CMC database into two
sets, we obtained the following results using BNN5.

1. The training set has ∼30% error in the “acd” group
and ∼28% error in the “drugs” group.

2. Approximately 50% of the compounds in the CMC
test set were classified as “acd”, and ∼56% of compounds
in the ACD were classified as “drugs”.

3. Approximately 70% of compounds in the MDDR
database were classified as non-drugs.

Both of these results indicate that our analysis has
picked up some real differences between molecules in
the CMC and the ones in the ACD.

3.4. Exploring Predictions on a Small Set of
Compounds. In order to explore the consequences on
predictions by making small changes in compounds, we
include the results on a small list of 30 compounds given
in Figure 2. This is a list generated by Guy Bemis from
his work on elucidating the main features (frameworks
and side chains) most often found in drugs.14,28 New
molecules were generated by randomly combining a few
frameworks with a few side chains. Figure 2 lists the
classifications obtained from the complete list of 173
descriptors and the smaller set of 78 descriptors. The
173 descriptor set classifies 10 (out of 30) compounds
as drug-like while the 78 descriptor set classifies 17
compounds as drug-like. In general from this small list,
it appears that small changes to a compound does not
generally change the classification. But, as the ex-

amples of benzilic acid to benzilic acid amide and 3,4-
methylenedioxyphenol (sesamol) to 3,4-methylenedioxy-
aniline show, the classification is sensitive to small
context-dependent changes. One curious result is the
change in classification of aspirin from nondrug-like to
drug-like in going from the 173 descriptor set to the 78
descriptor set.

Figure 2 also illustrates the difficulty encountered in
trying to capture drug-like features in simple rules. For
example, looking through the list of CMC compounds
that the network misclassifies (compounds not shown),
it is not easy to see any patterns. The same situation
results when we explore the nondrug-like compounds
in the MDDR (compounds not shown). In a sense this
is reassuring as we would not expect any “simple” rules
that will cover a vast majority of compounds in the CMC
and MDDR.

3.5. An Experiment in Designing a Combinato-
rial Library. Consider a situation where we have a
list of 10 000 compounds that we could purchase from
a vendor. We would like to buy and assay only 1% of
the compounds. Which 100 should we buy? If we have
no information about the classes of molecules that will
produce a hit in our assay, then we could simply choose
the top 100 drug-like compounds. To study this situa-
tion in detail we consider sets of 10 000 compounds
randomly drawn from the ACD. New sets are formed
by randomly replacing 1, 5, 10, 50, 100, and 500
compounds from the original set by compounds ran-
domly chosen from the CMC. Using the trained net-
works predictions are made (using the 173 descriptor
set) on all 10 000 compounds and the top scoring 100
drug-like molecules are chosen from the list. In order
to account for sampling error each such experiment is
run 20 times. The results are given in Table 8. Given
a set of a drug-like molecules in a set of size n, the
average number of drug-like molecules obtained in a
random selection of size l is al/n. The probability of
finding, say all the a CMC molecules in a subset of size
l is very very small29 (if n ) 10 000, l ) 100 and a ) 5
the probability is of the order of 10-10). The first column
in the table lists the total number of drug-like molecules
in the 10 000 compound dataset. The second column
lists (as a percent) the average number of CMC com-
pounds found in all of the 20 library-design experiments
conducted using BNN5 with 173 descriptors. We also
show within brackets the number of times all of the
possible CMC compounds are selected in the subset. As
is obvious from the table, the increase in the probability
of success is very large. Also, as expected, the prob-
ability of success decreases as the number of CMC
compounds in the set increases to a 100. Also, with 500
drug-like molecules in the original list the probability
of finding 100 drug-like molecules in a selection based
on BNN5 should be close to 100%. Figure 3 lists 50
compounds from the ACD that appeared in one of the
list of top 100 drug-like compounds. This figure pro-
vides some clue to the kinds of molecules the network
deems to be drug-like from the ACD.

3.6. A Second Experiment in Library Design:
Comparison to a Diversity Approach. In the stan-
dard diversity approach to selection, a random cutoff
point (say 0.3) in say the Tanimoto similarity21 is
applied, and only those compounds with a similarity co-
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Figure 2. Small list of 30 compounds with the consensus predictions from BNN5. Drug-like compounds are labeled “Drug” and nondrug-like compounds “ACD”. The first label is
based on the 173 descriptor set and the second on the 75 descriptor set.
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efficient lower than the cutoff make it into the selec-
tion. One natural question is, how does our method
compare with just looking at Tanimoto coefficient simi-
larity? To understand this we compare two sets of com-
pounds, (1) all drug-like compounds in the ACD with
the compounds in the CMC and (2) all nondrug-like
molecules in the MDDR with the compounds in the
CMC. For both sets, we tabulate the Tanimoto coef-
ficient of the most similar CMC compound. For ex-
ample, for each drug-like compound from the ACD, we
determine the Tanimoto coefficient for the most similar
molecule from the CMC. These Tanimoto coefficients
are shown as a histogram in Figure 4. This figure
shows Tanimoto coefficient values based on topological
torsions.30 Note that the distribution is peaked about
0.5 and shows a reasonable spread. Clearly, the com-
pounds selected as drug-like by the neural network are
not “similar” based on Tanimoto metrics. A very similar
histogram is obtained when the analysis is repeated for
the nondrug-like molecules in the MDDR and also when
calculating Tanimoto similarity based on just the 166
ISIS keys (results not shown). As mentioned before,
both sets of descriptors (topological torsions and ISIS
keys) are in common use in the diversity literature. This
demonstrates that neighborhoods defined by the BNN5
models are not similar to the ones generated by Tan-
imoto similarity cutoffs based on either topological tor-
sions or the ISIS keys as descriptors. Therefore, new
and different information that is not accessible by stand-
ard similarity metrics is being generated by our models.

4. Discussion

Some years ago it was shown that only 32 scaffolds
describe half of all known drugs.14 A similar analysis
has been carried out for the side chains in known drugs.
Again we observe that a small number of moieties
account for a large majority of the side chains found in
drugs.28 One admittedly speculative interpretation of

these findings is that the “universe” of drug-like mol-
ecules may be less diverse and more apprehensible than
previously imagined.

In this paper we have introduced and quantified the
notion of drug-likeness. Assuming this to be a “prop-
erty” of a molecule, it can be used to design combina-
torial libraries alone or in conjunction with the standard
approaches based on diversity. The basic assumption
in this work is that the CMC database is a good
surrogate for drug-like and the ACD database is a good
surrogate for nondrug-like molecules. We have de-
scribed one of the very few methods that incorporate
biological information (we know that CMC molecules
show biological activity on a wide range of targets) into
computational methods of library design.

Our results are very encouraging. We have shown
that it is possible to cover over 90% of the CMC database
using a set of simple 1D/2D descriptors. We have also
shown that extrapolations are possible using the models
built using BNN5. This is demonstrated by the ability
of the models to predict on the MDDR database result-
ing in about 80% of its contents being deemed drug-
like. This is an extremely useful result and provides
us reasonable confidence in designing drug-like combi-
natorial libraries.

Another useful lesson from this work is that we have
shown that it is possible to select a set of the most
pertinent descriptors. It will be interesting to repeat
the library design experiments done by Brown and
Martin21 using this subset instead of the complete list
of 166 ISIS keys that was used in their work.31 We have
shown that it is possible to build libraries that contain
drug-like molecules with anywhere from 3 to 5 orders
of magnitude higher probability than random methods.
In fact, at worst the networks perform about 72× better
than random in selecting drug-like molecules. This can
be done while maintaining a reasonable degree of
diversity in compound selection based on our results of
analyzing Tanimoto coefficients. We have also shown
that drug-likeness cannot be understood in terms of
closeness in Tanimoto coefficients.

A number of tests indicate that there are real differ-
ences between the distributions of compounds in the
CMC and the ACD. The results in Figure 2 point out
that small context-dependent changes to a molecule can
change the classification. It has not been possible to
capture in a few words or pictures the characteristics
that distinguish drugs from nondrugs. A priori we
would not expect such simple, distinguishing charac-
teristics to exit.

Molecules can be represented in a variety of ways.
It is reasonable to assume that models based on
complimentary sets of descriptors will improve the
reliability of predictions. We are, therefore, working on
developing a new set of descriptors in order to further
enhance the reliability of predictions. Emboldened by
this success, we are also working on learning to distin-
guish between CNS (central nervous system) and non-
CNS active compounds and other drug classes.32

It is possible to argue that we are merely capturing
the characteristics of existing drugs and that using this
as a filter will be detrimental to exploring new struc-
tural motifs. This is a reasonable argument. However,
our results do offer some hope. First, it has been

Table 8. Performance on Designing a Library of Drug-like
Molecules of Size 100 from an Original Set of 10 000
Compoundsa

no. of drugs % times the drugs appear in subset

1 95 (95)
5 81 (35)

10 82 (10)
50 77 (0; max. found 44)

100 72 (0; max. found 79)
500 100 (does not apply)

a The first column shows the number of compounds from the
CMC in the list of 10 000 molecules. The probability of finding at
least one active in a random draw of 100 compounds is about 0.01
(if there is one active in the original set of 10 000 compounds).
The probability of finding all the drug-like molecules in a random
draw gets progressively smaller and gets to be truly miniscule by
the time there are 50 CMC molecules in the original set. The
second column lists the average number (in percent) of CMC
molecules found in 20 different realizations of the 100 compound
subsets using BNN5. As an example, if the number of drugs in
the origianl list is 5, then for the 20 different realizations we expect
to obtain a maximum of 100 drugs, but we find only 81. The second
column also lists, within brackets, the average number (in percent)
of times all the molecules are found to be present in the final
subset. If this number is zero, we list maximum number of drug-
like molecules found in the top 100 drug-like molecules. For the
last row it does not make much sense to calculate this number
and hence is designated by “does not apply.” There is a very
substantial improvement over random methods.
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Figure 3. List of 50 compounds from the ACD that were classified with high probability of being drug-like. See the text for more details.
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possible for us to extrapolate with good success to the
MDDR database after learning on the CMC. This shows
that the models we have built are capable of recognizing
a broad class of structural motifs. Second, the method
advocated in this paper can work well in conjunction
with standard diversity protocols, especially by consid-
ering lower probability drug-like molecules. Third, from
our results on exploring similarity using standard
methods it is evident that our method does not behave
in a similar fashion to standard notions of similarity
used in diversity calculations. Finally, one could always
choose to select say a portion of the compounds using
this filter while reserving the rest for other methods.
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Figure 4. Histogram of Tanimoto coefficients based on
topological torsions of the most similar CMC molecule for each
of the drug-like molecules from the ACD. This demonstrates
that there is no simple relationship between drug-likeness and
standard 2D similarity measures of molecules.
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